\qquad

Ex1a. If 36.0 g of nitrogen react with excess hydrogen to produce 32.6 g of NH_{3}. Determine the $\%$ yield of the process? $\mathbf{N}_{2}+\mathbf{3} \mathbf{H}_{\mathbf{2}} \rightarrow \mathbf{2} \mathbf{N H}_{\mathbf{3}}$

Ex1B. You are asked to produce 15.0 g of NH_{3} using the process from the previous problem with a $\%$ yield of \qquad . How many grams of \mathbf{N}_{2} are needed?

The 3 Reaction Problem

NOTES:

RNX 1: $\quad 4 \mathrm{NH}_{3}+5 \mathrm{O}_{2} \rightarrow 4 \mathrm{NO}+6 \mathrm{H}_{2} \mathrm{O}$
RXN 2: $\quad 2 \mathrm{NO}+\mathrm{O}_{2} \rightarrow 2 \mathrm{NO}_{2}$
RXN 3: $\quad 3 \mathrm{NO}_{2}+\mathrm{H}_{2} \mathrm{O} \rightarrow 2 \mathrm{HNO}_{3}+\mathrm{NO}$
a. If 75.0 grams of NH_{3} is reacted with excess oxygen. What mass of HNO_{3} will be produced?
b. What is the actual yield if RXN 1 is 92.0 \%, RXN 2 is 85.0%, and RXN 3 is 97.0% ? (SHORT CUT)
c. What is the overall percent yield of the process?

Practice: \#1

$$
\begin{array}{lr}
\text { RNX 1: } & 4 \mathrm{NH}_{3}+5 \mathrm{O}_{2} \rightarrow 4 \mathrm{NO}+6 \mathrm{H}_{2} \mathrm{O} \\
\text { RXN 2: } & 2 \mathrm{NO}_{2} \mathrm{O}_{2} \rightarrow 2 \mathrm{NO}_{2} \\
\text { RXN 3: } & 3 \mathrm{NO}_{2}+\mathrm{H}_{2} \mathrm{O} \rightarrow 2 \mathrm{HNO}_{3}+\mathrm{NO}
\end{array}
$$

25.0 grams of oxygen were reacted with excess NH_{3} in RXN 1 and 17.5 grams of HNO_{3} were actually produced at the end of the process.
a. What is the \% yield of RXN 2 if RXN 1 is 92.0 \% and RXN 3 is 93.0% ? (hint: calculate the Theoretical yield of HNO3 first)
b. How many grams NO_{2} is actually produced at the end of RXN 2?
c. What is the overall percent yield of the process?

